
Homotopy-Driven Exploration of Human-made Spaces Using Signs

Claire Liang1 and Hadas Kress-Gazit2

Abstract— Robots deployed in airports, malls, and stadiums
today require expert oversight, pre-provided maps, and in-
frastructure. These systems are engineered to their specific
deployment spaces and rely heavily on geometric maps for
motion planning. In this work we consider a robot with only
local-sensing and present a navigation strategy that uses signs
and homotopy classes to fuel planning. We prove that in
the worst-case, this strategy still maintains the probabilistic
completeness that sampling based motion planners provide.
Furthermore, we experimentally show that this exploration
strategy results in 100% goal completion in real airport floor
plans, and demonstrate how the robot’s sensing capabilities
affects efficiency. We also show the effect of the environment
variables, such as total number of obstacles, and density of
obstacles, on navigation.

I. INTRODUCTION

Mobile robots deployed in human-made spaces such as
malls, airports, and stadiums, use perfect, pre-provided maps
to localize and plan or need to create their own [2], [20]. Fur-
thermore, they often need human expert oversight, ready to
take over at points of failure[9]. However, human navigators
require the same level of knowledge or constant guidance
from an expert to plan. As a consequence, for robots whose
primary role is to interact and navigate with humans, this
discrepancy in assumed knowledge can result in awkward
or failed interactions [2], [8]. Humans are regularly able
to plan in these spaces using no map and only their local
knowledge, but to have a robot navigate with the same
input while maintaining global completeness guarantees is
a difficult task.

If a robot is able to plan using only local sensing and
no provided map, we gain five main advantages: (i) We
can remove the need for environment specific engineering
or a costly, detailed, pre-provided metric map; (ii) If there
are changes in the space, such as temporary construction,
the robot can adapt on its own without human intervention;
(iii) By using only local-sensing, the robot doesn’t need to
localize and re-plan trajectories in a global map, and instead
plans on the fly; (iv) Since the robot’s sensing aligns with
human’s knowledge of their space, if navigation is paired
with an interaction task–such as a guide robot– the robot is
able to communicate about space in human terms. (v) The
robot is particularly suited to service robotics applications
where the robot has never previously seen the space and is
likely to be repeatedly thrown into new environments.

1Claire Liang is with The Department of Computer Science, Cornell
University, Ithaca, NY, USA cliang@cs.cornell.edu

2Hadas Kress-Gazit is with The Sibley School of Mechanical
and Aerospace Engineering, Cornell University, Ithaca, NY, USA
hadaskg@cornell.edu

Fig. 1. An example of a real sign from EIN airport.

In this work we present an algorithm for a robot with no
map and a fixed radius of local sensing to navigate to a goal
using signs that already exist in the space. Previous work [13]
relies on a minimum sensing radius assumption to ensure
global completeness properties for navigation. The technique
in this work gets rid of the necessity for a minimum sensing
radius and creates a way for a robot to systematically explore
their environment using a lightweight, topological represen-
tation of the space. We prove probabilistic completeness
and we show the impact of sensing radius on navigation
in real human-made spaces as well as artificially generated
environments.

II. RELATED WORK

Airport robots deployed today have failed human in-
teractions due to awkward behavior caused by replanning
[8]. Prior work [13] presents a local-sensing only method
for navigation that is able to achieve global guarantees by
generating a globally consistent skeletonization within its
local sensing representation. The robot then uses real life
signage to find its goal. The robot plans in a manner much
closer to its human counterparts than the real deployed robots
in work such as [8], [10], [20]. However [13] requires the
sensing radius to be twice as wide as the diameter of the
largest inscribed circle in the environment. If not, when the
robot enters a region larger than its sensing sphere it is lost.
In this paper, we fill in this gap, presenting an exploration
strategy for these ‘open-spaces’ that builds on the theme of
human strategies by using signs and maximizing topological
diversity when exploring.

Using only local sensing is a form of minimalist sensing
representation. Many minimal sensing approaches consider
multi-robot scenarios, such as swarm coordination [3], [6],
[15] rather than a single agent in an environment with non-
robot agents. Other classic minimal sensing approaches use
combinatorial space representations [18] such as visibility-
based planning [7] or ray-crossing strategies [19] and capture
topological information rather than geometric detail. The

978-1-7281-9077-8/21/$31.00 ©2021 IEEE

2021 IEEE International Conference on Robotics and Automation (ICRA 2021)
May 31 - June 4, 2021, Xi'an, China

12715

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n
(I

C
R

A
) |

 9
78

-1
-7

28
1-

90
77

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

R
A

48
50

6.
20

21
.9

56
18

62

Authorized licensed use limited to: Cornell University Library. Downloaded on June 30,2022 at 14:25:21 UTC from IEEE Xplore. Restrictions apply.

benefits of these strategies are that they assume little about
the robot’s capabilities and attempt to abstract away unneces-
sary details so the robot is able to plan with only the amount
of information necessary. The work in this paper uses this
philosophy to have the robot plan on the fly instead of having
to take burdensome replanning steps during execution.

Classic exploration methods for unknown environments
([11], [12])— especially strategies used in search and rescue
or field missions ([4], [5])— tend to assume much sparser
information than is available in human-made spaces. These
methods do not use context, such as signage, to bootstrap the
exploration and navigation process. These strategies are also
largely defined in metric terms while human counterparts
often reason about space topologically (in terms of its general
shape). Strategies that do use homotopy for sampling based
planning ([1], [17]) can be used in conjunction with our
strategy, but on their own do not use the global structure
of the space to guide planning.

III. DEFINITIONS

We use the following definitions and notation:
Homotopy Class: Two trajectories are considered to be
“homotopic” if one can be continuously deformed to the
other. Homotopy as an equivalence relation can be used to
establish “homotopy classes” of trajectories. [16]
Time: Time is measured in discrete steps t ∈ N.
Environment: The environment E ⊂ R2 is polygonal with
static polygonal obstacles oi ∈ O.
Sign: A sign s = (p, d, a) in a human-made space provides
high-level directions. The sign is defined by a position where
the sign is located (p), a destination (d), and an arrow (a) that
represents a general heading angle to navigate to destination
d. We denote S as all signs in E and St as all signs that the
robot has seen up to time t.
Robot: Robot state at time t is position ρ(t) ∈ R2 and the
sensing sphere with radius r, (Br(t)), centered at ρ(t)
Trajectory: The trajectory the robot has up to time t is
τt, where τ1 is the path from ρ(0) to ρ(1) and τt =
[τt−1, path from ρ(t− 1) to ρ(t)].

IV. PROBLEM FORMULATION

Given a robot with initial position ρ(0), sensing sphere
Br(t), environment E with obstacles O, goal g ∈ E and
signs S, find a controller such that ρ(t) = g.

A. Assumptions

We assume an omnidirectional robot with a history of its
trajectory and the ability to identify and distinguish distinct
obstacles. We assume signs to be visible from any angle so
the robot is able to read and interpret signs when within r
of the sign’s location.

V. APPROACH

The strategy for the robot to find the goal is to use signs to
guide the robot’s direction forward, and to use a homotopy
guided strategy when exploring the space.

When Br(t) contains ≥ 2 disjoint segments of the bound-
ary of E (such as in a corridor), the robot uses the algorithm

Fig. 2. Example of robot (positioned at red dots), sensing representation
(circles), and obstacles (light purple) in an environment at two time steps,
ti and ti+1. The robot’s trajectory prior to ti is in blue, the trajectory
planned during ti and taken between ti and ti+1 is in pink, the trajectory
planned during ti+1 is dotted. Waypoints at each timestep are green suns
(ρ(ti+1) is centered on the waypoint gs(ti)) and the sign direction range
is represented as the orange arc on each sensing circle.

from [13] to follow the corridor as explained in section V-
A; If not, meaning the robot is in an open space, the robot
follows the exploration strategy presented in section V-D.

A. Prior Work: Medial Axis-based Planning

A medial axis is the skeletonization defined by the cen-
troids of maximally inscribed spheres in a space (the lines in
fig. 3 are a construction of the medial axis). Work from [13]
uses the medial axis, signs, and only local sensing to navigate
to a goal; however, it assumes that the sensing radius r ≥ 2d
where d is the widest corridor in the space (the diameter of
the largest inscribed circle in E). When r ≥ 2d, “medial
axis” constructed with Br(t) provably aligns with the global
medial axis within the B r

2
(t) ball as shown in fig. 3. [13]

uses the medial axis as a graph structure and converts sign
directions to edge directions. However in spaces where the
global medial axis cannot be reliably reconstructed in Br(t)
(which would happen if the robot cannot meet the r ≥ 2d
requirement), this algorithm does not apply.

Fig. 3. An example of the global medial axis constructed in the B r
2
(t)

given local sensing in Br(t). The two concentric red circles are B r
2
(t)

and Br(t). The dashed lines are the global medial axis, the solid lines are
what is constructed given only local sensing. The subset of the solid lines
in B r

2
(t) align with the global medial axis.

However, signs still provide directions even if there isn’t
a medial axis to root them to. Therefore, the algorithm
proposed in this paper is meant to be used in spaces of
the environment where a medial axis cannot be reliably

12716

Authorized licensed use limited to: Cornell University Library. Downloaded on June 30,2022 at 14:25:21 UTC from IEEE Xplore. Restrictions apply.

constructed, to fill in the gaps that [13] left and give the
robot a navigation strategy invariant of sensing radius.

B. Word representation

We keep track of the robot’s trajectory homotopy class
in a word W=[Wp][Wc], where Wp captures the obstacles
the robot already passed, and Wc contains the obstacles the
robot is currently passing. Both Wp and Wc are composed of
“letters” which are tuples of the form (oi, side, dir, flag):
• oi ∈ O is an obstacle that intersects with

⋃ti
t=0Br(t)

• side ∈{left, right}: a trajectory τt passes an obsta-
cle oi on the left if it moves counter-clockwise with respect
to oi and right if it moves clockwise
• dir ∈{fwd, bwd}: A passing is labeled as “forward”
(abbreviated fwd) if the obstacle was added into W as the
robot was executing the forward algorithm (algorithm 1) and
“backward” (abbreviated bwd) if it was during the backward
algorithm (algorithm 2)
• flag ∈{True, False}: This flag records whether τt has
explored both the “left” and “right” sides of obstacle oi in
the forward direction.
Wp and Wc: starting and finishing obstacle “passing”

Fig. 4. An example of an obstacle that has been passed (O1, purple) and
an obstacle that is currently being passed (O2, orange). The trajectory taken
up to t is blue. The axis at−1 is the light green dashed segment and at
is the darker green green dashed line. The projection for O1 is the purple
segment and the projection for O2 is orange. O1 belongs to Wp and O2

belongs to Wc at the end of this timestep.

Let gs(t) be a waypoint the robot is travelling to from time
t to time t+1 (waypoint placement is explained in section V-
D). The robot’s starting position is at ρ(t) and next location
ρ(t+ 1) is located at gs(t). Let axis at be the line segment
from ρ(t) and gs(t). For obstacle oi let projat

(oi, Br(t)) be
oi
⋂
Br(t) projected onto at. From time t to t + 1 a robot

is currently passing object oi if projat
(oi, Br(t)) 6= ∅ and

gs(t) ∈ projat(oi, Br(t)). Objects currently being passed
are captured in Wc. Once this condition is no longer satisfied,
the object is removed from Wc.

If projat(oi, Br(t)) 6= ∅ and gs(t) 6∈ projat(oi, Br(t)), oi
has been “passed” by τt+1 and is added to Wp. An example
of O1 ∈Wp and O2 ∈Wc at time t is shown in fig. 4

Obstacles either appear directly in Wp or move to Wp

from Wc. Not all obstacles in Wc necessarily move to Wp.
The size of Wp grows monotonically, but Wc may grow or
shrink from timestep to timestep.

In fig. 2, the robot starting at time ti has W :
[(O1, right, fwd, False)],[(O2, right, fwd, False),
(O3, left, fwd, False)] and starting at time ti+1 has

the word representation of [(O1, right, fwd, False),
(O2, right, fwd, False)], [(O3, left, fwd, False)]

C. BACKTRACK SIGNAL

A robot switches to backtrack when the robot hits a dead
end and needs to revisit a previously traveled subsegment
of its path. Formally, the robot backtracks when ∀ possible
trajectories projected onto at+1∃ a nonempty intersection
with at. For example, the robot at time ti+1 in fig. 2 will
fulfill this condition in the next time step.

D. Forward movement and backtracking

In algorithm 1 the robot navigates using signs to dictate a
general direction. If the robot hits a backtrack signal, it then
backtracks in algorithm 2 by using the word representation
of the current trajectory’s homotopy class and traveling a tra-
jectory that minimizes distance traveled while guaranteeing
exploration of a previously unexplored homotopy class. We
elaborate on the specific steps:
GET WAYPOINT (choosing the next gs(t)): A robot at ρ(t)
navigates by first choosing a waypoint gs(t) that lies on the
boundary of Br(t). In the forward algorithms we choose
gs(t) based on the signs the robot has seen, St, while in the
backtracking algorithm, we choose based on the word W
and the homotopy class:

Fig. 5. An example waypoint arc φ in the (1) sign following scenario on
the left, where the sign-provided direction is the blue arrow and (2) desired
homotopy class scenario on the right, where several acceptable trajectories
are shown as blue curves. The the arcs in both images are shown in orange
and a potential viable gs(t) for the left is shown as a green sun.

1) If gs(t) is chosen based on St, there exists a most recent
sign s ∈ St that provides a heading angle a that should point
in the general direction of the goal. The robot defines an arc
φ(t) on Br(t) of the angle range (a − θ, a + θ) where θ
is an adjustable parameter (in our implementation we use
θ = 15◦).
2) If gs(t) is chosen based on a desired homotopy class,
from the set of all endpoints with valid trajectories in the
desired homotopy class, the arc φ(t) is defined by the
endpoints of the trajectories that minimize the additional
obstacles added into W .
gs(t) is then randomly placed on this arc φ(t).
PICK TRAJECTORY: The robot needs to generate a tra-
jectory from ρ(t) to gs(t). If (1) following signage, the robot
takes the shortest path from ρ(t) to gs(t). If (2) matching
a desired homotopy class, the robot also takes as input the
relevant letter in w ∈ W . It picks a shortest path trajectory
in the appropriate homotopy class.

12717

Authorized licensed use limited to: Cornell University Library. Downloaded on June 30,2022 at 14:25:21 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Forward algorithm
Input: ρ, g, r, Br(t), St, τt

1 while g /∈ Br(t) do
// update signs

2 St = UPDATE(St)
if not BACKTRACK SIGNAL then
// set waypoint gs based on St

3 gs = GET WAYPOINT(St)
τ ′t = PICK TRAJECTORY(ρ, gs,mode =
“sign′′) τt = [τt, τ

′
t] ρ = UPDATE(ρ),

W = UPDATE(W)
4 else
5 BACKTRACKING ALG(ρ, g, r, St,W, τt)
6 t = t+ 1

Algorithm 2: Backtracking algorithm
Input : ρ, g, r, St,W, τt

1 while g /∈ Br(t) do
2 if ∃w ∈Wp or Wc s.t. w.flag = False

then
3 W’=[Wc(end),...,Wc(1),Wp(end),...,Wp(1)]
4 for w in W’ do
5 if w.flag = False then

// set waypoint gs based
on w

6 gs = GET WAYPOINT(w), τ ′t =
PICK TRAJECTORY(ρ, gs,mode =
“homotopy′′, w), τt = [τt, τ

′
t],

ρ = UPDATE(ρ)
7 W ′ = UPDATE(W)
8 if w ∈W ′ then
9 BACKTRACK ALG(ρ, g,

r, St,W
′, τt)

10 else
11 W =W ′

12 else
13 ρ = SAMPLING BASED METHOD(ρ)

St = UPDATE(St)
W = UPDATE(W)

14 t = t+ 1

As the sensing radius of the robot approaches 0, or the
number of obstacles in the space approaches 0 this strategy
reduces to a probabilistic road map (PRM) strategy.

E. Guarantees: Probabilistic completeness invariant of r

The robot’s navigation policy prioritizes exploration of
homotopy classes, but the method is still probabilistically
complete (the probability that the planner fails to find a path,
if one exists, asymptotically approaches zero).

Lemma 5.1: Assume an unreachable goal, let ρ be a robot
with sensing radii r > 0. All homotopy classes defined by
objects {o1, o2, ...on} that appear in Wp will be explored in
finite time.

Proof: Every object is definitionally included in W .
W can be represented as a binary tree with each edge as a
passing side of an object and each object as a node. ρ using
BACKTRACK ALG ensures that each side of the obstacle
is explored at most once. BACKTRACK ALG also ensures
obstacles are explored from the bottom up of the binary tree.
The tree will be fully explored because BACKTRACK ALG
runs as long as there exists an object with at least one
unexplored passing side. Therefore BACKTRACK ALG en-
sures every homotopy class gets explored. Each iteration of
BACKTRACK ALG will be done in finite time. As there
are a finite number of obstacles, there are a finite number of
homotopy classes, each of which can be explored in finite
time; therefore the exploration of all homotopy classes can
be completed finite time.

Lemma 5.2: Assume an unreachable goal, let ρ be a robot
with sensing radius r > 0. All objects will eventually be
added to Wp by ρ with probability 1 as time approaches ∞.

Proof: Let oi be the last unpassed obstacle. Due to
theorem 5.1 all obstacles in Wp (which is all other obstacles
in this case) homotopy classes will be explored in finite time.
If oi is not discovered and passed during this process, when
all homotopy classes represented in Wp have been explored,
the algorithm uses a probabilistically complete sampling
based planner and will be able to find a trajectory that passes
obstacle oi as t→∞. This extends inductively to any finite
set of unpassed O′ ⊆ O.

Lemma 5.3: Assume there exists a point e ∈ E, let ρ be
a robot with sensing radius r > 0. e will have been included
in

⋃i=n
i=1 Br(t) as n→∞
Proof: e will be seen in as n→∞ for the same reason

that all obstacles will eventually be seen in Lemma 5.2.

VI. EVALUATION

Fig. 6. Three examples of real airport environments with increasing
complexity: Ithaca (ITH: Simple), Komatsu (KMQ: Medium), and Dublin
airport (DUB: Complex) as used in Experiment 1. d in each airport is shown
as a red dashed segment in its respective maximal inscribed circle.

In section V we prove theoretical guarantees of probabilis-
tic completeness, but to show our approach is practical, we
experimentally validate the efficiency of the robot’s planning.
In section VI-A we demonstrate that the strategy from
section V-D can be used with the technique from section V-A
in real airport floor plans and show the effect of the sensing
radius on the trajectory length. To illustrate how variations in
the environment can impact the robot’s performance across

12718

Authorized licensed use limited to: Cornell University Library. Downloaded on June 30,2022 at 14:25:21 UTC from IEEE Xplore. Restrictions apply.

sensing radii, in fig. 9 we show the effects of sensing radius
size on trajectory length in environments that vary in obstacle
area density, holding the total number of homotopy classes
constant. Then, in fig. 10 we show the effects of the sensing
radius size on the trajectory length in environments that vary
in total number of homotopy classes, holding the obstacle
volume density constant. For each of the experiments, we
normalize using the shortest path length in each environment.
This allows us account for airports’ varying sizes without
normalizing over an online sampling based planner’s trajec-
tory, which may not be optimal.1

A. Experiment 1:

Our first experiment demonstrates that algorithm 1 and
algorithm 2 in conjunction with the medial axis and sign
following strategy from [13]— explained in section V-A—
works in real airports. The experiment also shows the effects
of varying sensor radius on navigation efficiency.

We use 20 airport maps available via Google Maps and
annotated with signs from Google Streetview (with the
exceptions of ITH and ORD, which were hand-gathered and
hand-labeled). The labeling process was done by volunteers
who found signs using Google Streetview and noted the
directions they interpreted from the signs. We also include
polygonal obstacles in the space that represent a subset of
the obstacles in seen in the real airports.

For each airport we have one fixed goal. Let d be defined
as the diameter of the largest disc that can be inscribed in E,
as used in [13]. We define three categories of sensing radius:
(1) r < d, (2) d ≤ r < 2d, and (3) r ≥ 2d. For each category
we initialize 100 random starting points in E and a random
sensing radius r that satisfies the category’s assumption.

The airports can be ranked in complexity by the cardinality
of the edge sets of their automatically generated medial axes
from [13]. In the bar chart in fig. 7 we show the average
trajectory lengths, normalized by the shortest path in the
environment, of each radius category in three of the 20
airports we ran on: a simple airport (ITH) , a medium
complexity airport (KMQ), and a complex airport (DUB)
shown in fig. 6 from left to right. For clarity of presentation,
we show only these three as representatives from the pool
of 20 airports. In all 20 maps for all trials, the robot found
the goal. The average normalized trajectory lengths for each
group are shown in the table in fig. 7.

Observations: Under the widest sensing radius setting all
airports are strictly following the strategy from [13]. In the
other two sensing radius settings, the robot switches between
open-space exploration and medial axis following depending
on the space’s geometry. The majority of simple airports are
one large room, but amongst medium and complex airports
there is a broad variety of geometric features. We observe
that in airports with narrow passageways connecting large

1In all three experiments, when r ≥ 2d, the robot is always able to
construct a medial axis and thus navigates using the strategy from [13].
Since the approach is near optimal, when normalized with the shortest path
as shown in the bar charts (fig. 7,fig. 9, fig. 10), they perform about the
same.

All 20 airports - Normalized average trajectory
Complexity r < d d ≤ r < 2d r ≥ 2d
Simple (5) 8.09 4.26 1.01
Medium (7) 9.1 2.79 1.04
Complex (8) 8.47 3.31 1.11

Fig. 7. Bar chart shows average trajectory length normalized by shortest
path compared over: (r < d, d ≤ r < 2d, r ≥ 2d). Simple airport Ithaca
(ITH) is in purple, medium airport Komatsu (KMQ) in orange, and complex
airport Dublin (DUB) in green, in order from left to right. The table shows
average normalized trajectory lengths for all 20 airports categorized into
complex, medium, and simple groups (with the number of airports in the
left column).

rooms, the robot spends the bulk of its time exploring the
rooms (such as KMQ in fig. 6); for airports that are long
corridors with occasional offshoots two one or two large
rooms (such as DUB in fig. 6), the robot spends the bulk
of its time following the medial axis. This experiment shows
that the robot can reach its goal in real airports and that a
smaller sensing radius decreases navigation efficiency, but
the impact is not linear. There is a tradeoff between the
sensing radius that real sensors can pragmatically achieve and
the efficiency of the robot’s navigation. The numbers suggest
the sweetspot for environments, invariant of their complexity,
lies in the d ≤ r range; this insight can influence the design
choices of sensors for robots operating in such spaces.

B. Experiment 2:

Our second experiment varies sensing radius and density
of obstacles in the space while holding the number of total
homotopy classes constant.

Fig. 8. Example of an artificially generated 2d polygonal environment with
polygonal obstacles as used in Experiment 2 and 3.

We use 30 artificially generated polygonal environments
with a variety (in shape and size) of polygonal obstacles
such as the one shown in fig. 8, 10 under each of three clas-
sifications: the area of obstacles at 10% of the environment

12719

Authorized licensed use limited to: Cornell University Library. Downloaded on June 30,2022 at 14:25:21 UTC from IEEE Xplore. Restrictions apply.

area, 25%, and 50%. We hold the number of obstacles in the
environment constant.

For each environment, the robot is given a random starting
point and an unreachable goal. We have robots with sensing
radii in the same ranges as experiment 1: r < d, d ≤ r <
2d, r ≥ 2d. We then have the robot navigate until it explores
all homotopy classes.

Fig. 9. This bar chart shows the average trajectory length taken to
explore all homotopy classes for each classification of obstacle density in
the environment and robot sensing radius. 10% density is in blue, 25%
density is in mauve, and 50% density is in red, ordered from left to right.

Observations: All robots explore all homotopy classes
successfully. The density of obstacles does not have signifi-
cant correlation with the average trajectory length. However,
the sensing radius does. When looking across environments,
robots with smaller sensing radii spend more time randomly
exploring, searching for obstacles to ground their homotopy
class search in. However, when looking exclusively at the
trajectory length of the robots during their time spent in
homotopy exploration mode, normalized trajectory lengths
are not significantly different across different sensing radii.
This observation suggests that the efficiency of algorithm 1
and algorithm 2 is invariant of the size of the obstacles.

C. Experiment 3:

Our third experiment varies sensing radius and total num-
ber of homotopy classes in the space while holding the
density of obstacle volume in the space constant.

We use 30 artificially generated polygonal environments
with polygonal obstacles such as the one shown in fig. 8, 10
under each of three classifications: 5, 10, and 20 obstacles.
We hold the obstacle area density constant at 25%.

For each environment, the robot is given a random starting
point and an unreachable goal. We have robots with sensing
radii in the same ranges as experiment 1 and 2: r < d, d ≤
r < 2d, r ≥ 2d. The robot navigates until it explores all
homotopy classes.

Observations: All robots explore all homotopy classes
successfully. The total number of homotopy classes and
sensing radii both impact the robot’s efficiency. We find that
in the environments with more obstacles, the robot spends

Fig. 10. This bar chart shows the average trajectory length taken to explore
all homotopy classes for each classification of total number of obstacles
in the environment and robot sensing radius. 5 obstacles is in purple, 10
obstacles is in mauve, 20 obstacles is in green, ordered from left to right.

more time in homotopy exploration mode than in random ex-
ploration mode. Needing to explore more homotopy classes
means the overall trajectory length is longer; the busier the
space, the more options the robot needs to explore. When
using algorithm 1 and algorithm 2 in practice, one should
be careful about which static obstacles to consider in the
word representation. For example, a real airport robot may
consider a baggage claim carousel to be a legitimate obstacle,
but leave a ficus plant up to real-time collision avoidance.
It likely does not matter if the ficus is explored on both
the left and the right. This type of information, given the
correct sensing formats, may be available at run-time and
could boost efficiency further.

VII. FUTURE WORK

This work does not explicitly handle sensing and sign
interpretation. To use this technique, sensor data needs to
be interpreted to create (1) A medial-axis like skeletonization
(2) an interpreted sign representation. For (1) the robot needs
to be able to uniquely identify static obstacles and omit
dynamic obstacles when generating a medial axis represen-
tation. For (2) the robot needs to perform sign detection,
homography estimation to convert the sign’s arrows to an
executable robot heading angle, and the grouping task to
associate arrows with the appropriate destinations listed on
the sign (some initial work is in [14]).

Conclusion: In this work we present a sensing-radius
invariant approach for navigation of human-made spaces
that uses only local sensing and human signage. While
performance is best when the robot’s sensing radius is greater
than twice the width of the largest corridor, even when that
condition is not met, we guarantee probabilistic completeness
and demonstrate success in real-world spaces 100% of the
time. Our experiments illustrate the effects from the varying
geometry of real airports and the impact of sensing-radius
on efficiency of homotopy class exploration. In this work
we make progress towards the goal of a robot that can be
placed in any human-made space, without costly initial setup,
and be able to navigate alongside real human pedestrians.

12720

Authorized licensed use limited to: Cornell University Library. Downloaded on June 30,2022 at 14:25:21 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Subhrajit Bhattacharya, Vijay Kumar, and Maxim Likhachev. Search-
based path planning with homotopy class constraints. In Conference
on Artificial Intelligence (AAAI), 2010.

[2] Yingfeng Chen, Feng Wu, Wei Shuai, and Xiaoping Chen. Robots
serve humans in public places—kejia robot as a shopping assistant.
International Journal of Advanced Robotic Systems (IJARS), 14(3),
2017.

[3] MC Chinnaiah, Sanjay Dubey, L Vineela, K Bindu, and E Bharath
Babu. An unveiling path planning algorithm with minimal sensing
using embedded based robots. In IEEE International Conference on
Advances in Human Machine Interaction (HMI), 2016.

[4] David M Cole and Paul M Newman. Using laser range data for 3d
slam in outdoor environments. In IEEE International Conference on
Robotics and Automation (ICRA), 2006.

[5] Swarnava Dey and Arijit Mukherjee. Robotic slam: a review from fog
computing and mobile edge computing perspective. In International
Conference on Mobile and Ubiquitous Systems: Computing Network-
ing and Services (MobiQuitous), 2016.

[6] Jakob Fredslund and Maja J Mataric. A general algorithm for robot
formations using local sensing and minimal communication. IEEE
transactions on robotics and automation, 18(5):837–846, 2002.

[7] Leonidas J Guibas, Jean-Claude Latombe, Steven M LaValle, David
Lin, and Rajeev Motwani. A visibility-based pursuit-evasion problem.
International Journal of Computational Geometry & Applications,
9:471–493, 1999.

[8] Michiel Joosse and Vanessa Evers. A guide robot at the airport: First
impressions. In ACM/IEEE International Conference on Human-Robot
Interaction, 2017.

[9] Michiel Joosse, Manja Lohse, and Vanessa Evers. How a guide robot
should behave at an airport insights based on observing passengers.
CTIT Technical Report Series, (TR-CTIT-15–01), 2015.

[10] Takayuki Kanda, Masahiro Shiomi, Zenta Miyashita, Hiroshi Ishiguro,
and Norihiro Hagita. A communication robot in a shopping mall. IEEE
Transactions on Robotics, 26(5):897–913, 2010.

[11] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars.
Probabilistic roadmaps for path planning in high-dimensional con-

figuration spaces. IEEE transactions on Robotics and Automation,
12(4):566–580, 1996.

[12] Steven M LaValle. Rapidly-exploring random trees: A new tool for
path planning. 1998.

[13] Claire Liang, Ross A Knepper, and Florian T Pokorny. No map,
no problem: A local sensing approach for navigation in human-
made spaces using signs. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2020.

[14] Claire Liang, Cheng Perng Phoo, Laasya Renganathan, Yingying Yu,
Bharath Hariharan, and Hadas Kress-Gazit. Perceiving signs for
navigation guidance in spaces designed for humans. In Workshop
on Closing the Academia to Real-World Gap in Service Robotics at
Robotics Science and Systems (RSS), 2020.

[15] KN McGuire, Christophe De Wagter, Karl Tuyls, HJ Kappen, and
GCHE de Croon. Minimal navigation solution for a swarm of tiny
flying robots to explore an unknown environment. Science Robotics,
4(35), 2019.

[16] James R Munkres. Topology, 2000.
[17] Florian T Pokorny, Danica Kragic, Lydia E Kavraki, and Ken Gold-

berg. High-dimensional winding-augmented motion planning with
2d topological task projections and persistent homology. In IEEE
International Conference on Robotics and Automation (ICRA), 2016.

[18] Subhash Suri, Elias Vicari, and Peter Widmayer. Simple robots
with minimal sensing: From local visibility to global geometry. The
International Journal of Robotics Research (IJRR), 27(9):1055–1067,
2008.

[19] Benjamı́n Tovar, Luis Guilamo, and Steven M LaValle. Gap navigation
trees: Minimal representation for visibility-based tasks. In Algorithmic
Foundations of Robotics VI, pages 425–440. Springer, 2004.

[20] Rudolph Triebel, Kai Arras, Rachid Alami, Lucas Beyer, Stefan
Breuers, Raja Chatila, Mohamed Chetouani, Daniel Cremers, Vanessa
Evers, Michelangelo Fiore, et al. Spencer: A socially aware service
robot for passenger guidance and help in busy airports. In Field and
service robotics, pages 607–622. Springer, 2016.

12721

Authorized licensed use limited to: Cornell University Library. Downloaded on June 30,2022 at 14:25:21 UTC from IEEE Xplore. Restrictions apply.

